

ADVANCES IN PLANT DISEASE MANAGEMENT THROUGH GENOMIC AND PHENOMICS TECHNOLOGIES

Kasi Rao Mediga*

Senior Executive (R&D), Godrej Agrovet Limited, Khammam, Telangana -507165, India

*Corresponding author email: kasiraomediga@gmail.com

ABSTRACT

Innovative genomic and phenomic technologies are reshaping plant disease management by enabling rapid pathogen detection, precise resistance breeding, and early diagnosis of infections. Whole-genome sequencing reveals pathogen diversity, evolution, and virulence mechanisms, while genome editing and genetic engineering allow targeted improvement of host resistance. Integrated multi-omics approaches deepen understanding of host-pathogen interactions by linking genomic, transcriptomic, proteomic, and metabolomic changes. In parallel, hyperspectral imaging provides non-destructive, early disease detection at field scale. Collectively, these advances support sustainable, resilient disease management under evolving environmental and pathogen challenges.

KEYWORDS: Genome editing, hyperspectral imaging, multi-omics, plant disease management, whole genome sequencing

INTRODUCTION

Plant diseases continue to constrain global agricultural productivity by reducing yield, compromising product quality, and threatening food security. Climate change, intensified pathogen evolution, and increasing trade activities have amplified the frequency and severity of disease outbreaks. Modern agriculture requires tools that can diagnose pathogens accurately, improve host resistance rapidly, and monitor crops continuously. In recent years, advances in genomics, molecular biology, and remote sensing have provided powerful solutions. In this article, we review five major biotechnological pillars such as whole genome sequencing, genome editing, genetic engineering, multi-omics, and hyperspectral imaging and highlights their contributions to modern plant disease management.

WHOLE GENOME SEQUENCING IN PATHOGEN SURVEILLANCE AND RESISTANCE DISCOVERY

Whole genome sequencing (WGS) has revolutionized the understanding of plant pathogens by delivering complete genetic blueprints at high speed and resolution (Biradar and Patil, 2023). WGS enables:

1. PATHOGEN DETECTION AND DIAGNOSTICS

Sequencing-based detection allows identification of known, novel, or mixed infections without reliance on prior biological information. Metagenomic sequencing, in particular, has become a reliable tool for discovering emerging pathogens directly from infected host tissues.

2. POPULATION STRUCTURE AND EVOLUTIONARY ANALYSES

High-resolution comparative genomics facilitates tracing pathogen spread, identifying mutation patterns, monitoring virulence evolution, and detecting fungicide or pesticide resistance alleles. Such insights support early-warning systems and guide targeted management interventions.

3. RESISTANCE GENE DISCOVERY

Sequencing diverse germplasm, landraces, and wild relatives enables the identification of resistance (R) genes and quantitative trait loci (QTLs). WGS-based genome-wide association studies (GWAS) and pangenome analyses have accelerated the discovery of genetic factors underpinning host defense.

GENOME EDITING FOR PRECISION CROP PROTECTION

Genome editing technologies, particularly CRISPR/Cas systems, provide unprecedented precision for modifying genes associated with susceptibility or resistance (Patait Neha et al., 2024).

1. FUNCTIONAL INACTIVATION OF SUSCEPTIBILITY GENES (S-GENES)

Targeted knockouts of S-genes limit pathogen entry or colonization. Such edits offer durable and broad-spectrum resistance without altering key agronomic traits.

2. ENHANCEMENT OF IMMUNE SIGNALING PATHWAYS

Genome editing can fine-tune transcription factors, receptor-like kinases, or defense regulators that modulate plant immunity. Multiplex editing allows simultaneous modification of several genes, producing polygenic resistance.

3. RAPID DEVELOPMENT OF CLIMATE- AND DISEASE-RESILIENT VARIETIES

By bypassing long breeding cycles, CRISPR accelerates the deployment of elite cultivars with improved disease tolerance, essential under rapidly shifting environmental conditions.

GENETIC ENGINEERING FOR NOVEL RESISTANCE TRAITS

While genome editing modifies endogenous genes, genetic engineering introduces new genetic elements that enhance host defense capabilities (Biradar et al., 2023).

1. TRANSGENIC RESISTANCE TO VIRUSES, BACTERIA, AND INSECTS

Integration of viral coat proteins, antimicrobial peptides, or insecticidal genes (such as Bt toxins) offers protection against diverse pathogens and vectors. These traits can drastically reduce dependency on pesticides.

2. ENGINEERING PATHOGEN RECOGNITION SYSTEMS

Synthetic R-genes and chimeric receptors can be designed to broaden recognition of pathogen effectors, expanding the host immune landscape beyond natural limits.

3. METABOLIC PATHWAY MODULATION

Transgenes that elevate production of phytoalexins, reactive oxygen species, or other defense metabolites increase basal immunity and restrict pathogen establishment.

MULTI-OMICS APPROACHES FOR DECIPHERING HOST-PATHOGEN INTERACTIONS

Multi-omics frameworks integrate multiple layers of biological information to produce a systems-level understanding of disease dynamics (Mediga and Duppala, 2023; Biradar and Namrata, 2024; Rao and Sunkad, 2024).

1. GENOMICS AND TRANSCRIPTOMICS

Comparative expression profiling reveals activated or suppressed defense pathways, identifies key regulatory hubs, and supports gene-level prioritization for breeding or engineering.

2. PROTEOMICS AND METABOLOMICS

Protein abundance, post-translational modifications, and metabolic signatures provide mechanistic insights into plant responses during infection. These datasets help identify biochemical pathways that govern resistance or susceptibility.

3. SYSTEMS BIOLOGY INTEGRATION

Machine learning and network modeling integrate multi-omics datasets to construct regulatory networks, predict pathway interactions, and identify biomarkers for early detection or resistance breeding.

HYPERSPECTRAL IMAGING FOR EARLY AND NON-INVASIVE DISEASE DETECTION

Hyperspectral imaging (HSI) represents a major phenotyping innovation for crop health monitoring (Patil et al., 2023).

1. SPECTRAL SIGNATURES OF DISEASE

Infection alters pigment composition, water content, and structural properties of leaves, producing changes in spectral reflectance across visible and infrared wavelengths. HSI detects these changes long before visual symptoms appear.

2. FIELD-SCALE MONITORING

Mounted on drones, tractors, or satellites, hyperspectral sensors generate high-resolution maps that identify disease hotspots, enabling precision spraying, targeted scouting, and reduced chemical inputs.

3. INTEGRATION WITH AI AND MACHINE LEARNING

Spectral datasets coupled with classification algorithms support real-time disease prediction and automated decision-making systems, improving responsiveness during outbreaks.

CONCLUSION

The integration of genomic and phenomic innovations is reshaping the landscape of plant disease management. Whole genome sequencing strengthens pathogen surveillance, genome editing and genetic engineering accelerate the development of resistant cultivars, multi-omics provides a holistic understanding of disease biology, and hyperspectral imaging enables early, large-scale detection. Together, these complementary tools support a shift toward predictive, precise, and sustainable plant protection strategies. As these technologies continue to advance, they will play a critical role in safeguarding global food systems against evolving pathogen threats.

REFERENCES

Biradar, P. and Namrata, M. (2024). Advancing Endophyte Studies through Multi-Omics Excellence. *AgriCos e-Newsletter*, 05(02):104-107. ISSN:2582-7049.

Biradar, P.D. and Patil, L.P. (2023). Unravelling the Mysteries of Plant Pathogens: Cutting-Edge Whole Genome Sequencing Techniques and their Recent Advances. *AgriCos e-Newsletter*, 4(9): 11-14. ISSN: 2582-7049.

Biradar, P.D., Sahane, P.A. and Patait, N.N. (2023). Genetic Engineering and Biotechnology in Disease Management. *Modern Approaches in Plant Pathology*, 2: 49. ISBN: 978-93-58993-78-3.

Mediga, K.R. and Duppala, M.K. (2023). Transcriptomics: An Emerging Tool (Approach) For Plant Disease Management. *Krishi Netra*, 1(1); 25-27.

Patait Neha, N., Biradar, P.D. and Sahane, P.A. (2024). CRISPR CAS-9: Molecular Tool for Biotic and Abiotic Stress Management. pp. 117-139. ISBN-10-8196250509.

Patil, L., Biradar, P., Ahale, S. and Deshmukh, A. (2023). Hyper-spectral imagingmeets artificial intelligence: a game-changer for plant disease diagnosis. *AgriCose-Newsletter*, 4(07): 68-70. ISSN: 2582-7049.

Rao, M.K. and Sunkad, G. (2024). Metaomics approaches to unravel the functioning of multispecies microbial communities. In *Microbiome drivers of ecosystem function*. Academic Press. pp. 395–416.

How to cite:

Mediga, K.R. (2025). Advances in plant disease management through genomic and phenomics technologies. Leaves and Dew Publication, New Delhi 110059. *Agri Journal World* 5 (4): 22-26.

*****XXXX*****