

METAMORPHOSIS IN INSECTS - THE INHERENT MECHANISM OF SURVIVAL

Akash Saha*, Seema Tripathy

Faculty of Agriculture, Sri Sri University, Cuttack, Odisha, India

*Corresponding author email: akash.ento.2001@gmail.com

ABSTRACT

Metamorphosis is an intriguing process that facilitates substantial changes in the structure and function of insects throughout their life cycle. This adaptation is not only vital for their survival but also enhances their ecological success. It has been found that, the flight of insects initiates the path to metamorphosis favouring differences between adults and juveniles. Both hormonal systems such as Ecdysteroids and Juvenile hormones which actively function during the embryonic & post embryonic development and control of gene Broad-Complex (BR-C), E74, and E75. Here, we will delve into the different types of metamorphosis, examine the remarkable physiological and hormonal processes that drive these transformations, and highlight their evolutionary significance in promoting insect survival.

KEYWORDS: Ecdysone, Juvenile hormone, Metamorphosis, Methoprene

INTRODUCTION

The word "Metamorphosis" is originated from two Greek roots i.e., "Meta" and "Morph" which indicates changes of structure. Metamorphosis is defined to the series of physiological, morphological, and ecological changes of insect from egg to adult stage. Insects being the most diverse and abundant group of arthropods on planet exhibit a variety of developmental strategies that enhance their survival in fluctuating environments. Metamorphosis is generally categorized into five types viz., Ametabolous, Hemimetabolous, Holometabolous, Paurometabolous and Hypermetamorphosis. This entire process is controlled by specific hormones which has been an experimental study for modern entomology. It has been reported that red rust flour beetle (*Tribolium castaneum*) a stored grain insect pest from order coleoptera and family tenebrionidae, gave an insight on the tolerant gene Methoprene (Met) encodes the receptor for Juvenile hormones (JH) (Konopová *et.al.*, 2007). A deeper understanding on the molecular mechanisms underlying insect metamorphosis which illuminates evolutionary trajectories, adaptive strategies, and survival mechanisms. It also highlights the role of stage-specific regulatory genes that

orchestrate phenotypic transitions across developmental stages, thereby governing the complexity of insect life histories.

ROLE OF METAMORPHOSIS IN INSECTS

- Metamorphosis enables insects to endure unfavorable climates by entering adaptive states such as hibernation, aestivation, or diapause.
- This process supports insect growth through successive molting, where the old cuticle is discarded and replaced with a new one.
- The transformation reduces competition for food among insects by promoting inactivity in certain stages or by encouraging shifts in feeding habits and habitats.

TYPES OF INSECT METAMORPHOSIS

Insects exhibit distinct types of metamorphosis, classified according to the degree of morphological and physiological transformation occurring during development viz.,

1. Ametamorphosis
2. Incomplete metamorphosis
3. Gradual metamorphosis
4. Complete metamorphosis
5. Hyper metamorphosis

AMETAMORPHOSIS

Ametamorphosis is defined by the absence of metamorphosis which includes three life stages viz., egg, young, and adult and possessing of molting throughout the life. Newly hatched insects known as juveniles which is closely resembling with adults except size. Example- Silverfish, Springtail, Telsontail etc., known as ametabolous insects.

INCOMPLETE METAMORPHOSIS

Incomplete metamorphosis is defined by the presence of metamorphosis but partial in nature which includes three life stages viz., egg, immature stage (nymph and naiad), adult. Nymph looks like the adult

except size, wing, and genital organ. Naiads are aquatic whereas nymphs are both aquatic and terrestrial in nature. Example- Cricket, Cockroach, Stonefly etc., known as hemimetabolous insects.

GRADUAL METAMORPHOSIS

Gradual metamorphosis is defined by the simple metamorphosis process including three life stages viz., egg, nymph, and adult. Nymphs are closely resembling to the adult except wings. Example- Grasshopper, Cockroach etc., are known as paurometabolous insects.

COMPLETE METAMORPHOSIS

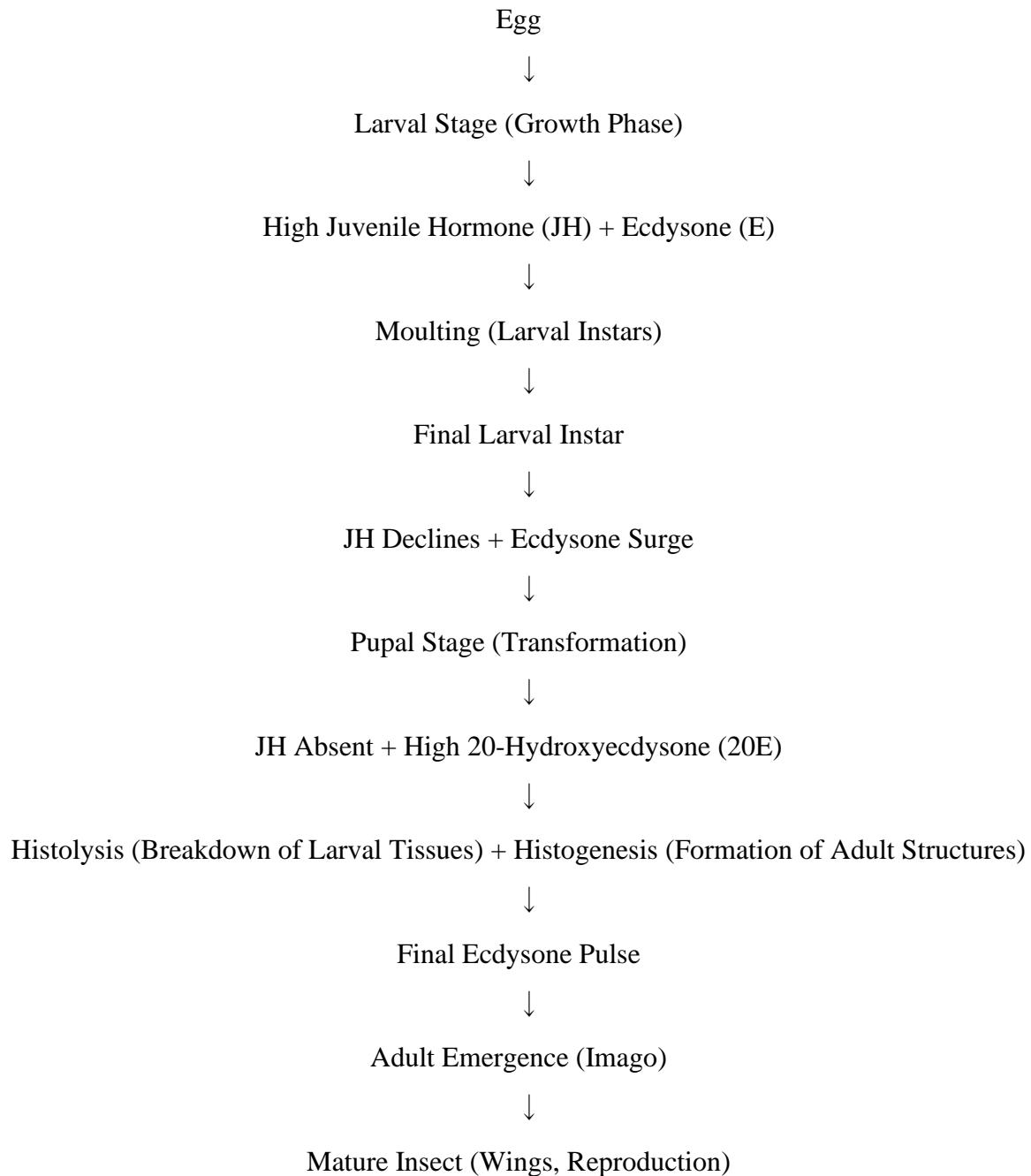
Complete metamorphosis is defined by the presence of metamorphosis process including four life stages viz., egg, larva, pupa, adult. Example- Weevil, Housefly etc., are known as holometabolous insects (85%).

HYPERMETAMORPHOSIS

Special and peculiar type of complete metamorphosis where larval instars differ from each other distinctly. Example: Blister Beetle.

MECHANISMS OF INSECT METAMORPHOSIS

1. HORMONAL REGULATION


Juvenile hormone (JH): It maintains larval characteristics by controlling pupation. It is secreted from Corpora allata which plays a crucial role in regulating insect development, metamorphosis, reproduction, and other physiological processes.

Ecdysone (moultling hormone): Prothoracic glands secrete ecdysone which is further hydroxylated to 20-hydroxyecdysone (20E) by ecdysone 20-monoxygenase in peripheral tissues (Gilbert *et al.*, 2002). Interaction between these two hormones dictates the timing and nature of transformation.

2. GENETIC AND MOLECULAR CONTROL

- Genes like Broad-Complex (BR-C), E74, and E75 mediate ecdysone signaling (Thummel *et al.*, 1996).
- MicroRNAs (miRNAs) and transcription factors fine-tune the developmental transitions.

3. STEPS OF HORMONAL CONTROL OF METAMORPHOSIS

EVOLUTIONARY AND ECOLOGICAL SIGNIFICANCE

1. ADAPTIVE ADVANTAGES:

- Complete metamorphosis allows larvae and adults to exploit different ecological niches.
- Reduces intraspecific competition for resources.

2. SURVIVAL STRATEGIES

- Pupation offers a protective stage, allowing survival in harsh conditions.
- Seasonal synchronization of development helps insects align with favorable environmental conditions.

APPLICATIONS OF INSECT METAMORPHOSIS

1. INTEGRATED PEST MANAGEMENT (IPM)

- Understanding insect metamorphosis is crucial in controlling pest populations.
- Targeting specific developmental stages can enhance biological control efforts.

2. POLLINATION AND AGRICULTURAL BENEFITS

- Many holometabolous insects, such as bees and butterflies, are essential pollinators.
- Metamorphosis ensures an effective division of labour within species, improving ecosystem stability.

3. MEDICAL AND BIOTECHNOLOGICAL RESEARCH

- Studying insect metamorphosis contributes to advances in developmental biology and endocrinology.
- Insights into genetic regulation of growth and differentiation have potential medical applications.

CHALLENGES

1. Climate change affects developmental timing and success rates in many insect species.
2. Pesticide exposure disrupts hormonal balance, leading to developmental abnormalities.
3. Habitat destruction threatens metamorphic stages, impacting population sustainability.

FUTURE DIRECTIONS

1. Advances in molecular biology can further elucidate gene networks regulating metamorphosis.
2. Exploring the impact of urbanization on insect development and survival.
3. Sustainable pest control methods that minimize harm to beneficial insects.

CONCLUSION

Metamorphosis represents a key evolutionary innovation that has significantly contributed to the success of insects. The intricate hormonal and genetic regulation of this process ensures efficient adaptation, resource partitioning, and survival. Understanding metamorphosis not only provides insights into insect

biology but also aids in pest management and conservation efforts. Future research and conservation efforts should focus on mitigating environmental threats to sustain insect populations, which play vital roles in global ecosystems.

REFERENCES

Konopová, B., and Jindra, M. (2007). Juvenile hormone resistance gene *Methoprene-tolerant* controls entry into metamorphosis in the beetle *Tribolium castaneum*. *Proceedings of the National Academy of Sciences of the United States of America*, 104(25), 10488–10493.
<https://doi.org/10.1073/pnas.0703719104>

Gilbert, L. I., Rybczynski, R., and Warren, J. T. (2002). Control and biochemical nature of the ecdysteroidogenic pathway. *Annual Review of Entomology*, 47(1), 883–916.
<https://doi.org/10.1146/annurev.ento.47.091201.145302>.

Thummel, C. S. (1996). Flies on steroids—*Drosophila* metamorphosis and the mechanisms of steroid hormone action. *Trends in Genetics*, 12(8), 306–310. [https://doi.org/10.1016/0168-9525\(96\)10031-9](https://doi.org/10.1016/0168-9525(96)10031-9).

How to cite:

Saha, A. and Tripathy, S. (2025). Metamorphosis in insects - the inherent mechanism of survival. Leaves and Dew Publication, New Delhi 110059. *Agri Journal World* 5 (3): 42-47.

*****XXXXX*****